Dynamic Reconfiguration of Complete Binary Trees in Faulty Hypercubes
在缺失的超立方體中動態重建完全二元樹

Chui-Cheng Chen
Southern Taiwan University of Technology
Department of Information Management
cchen@mail.stut.edu.tw

Abstract

In this paper we present how to reconfigure dynamically a complete binary tree in faulty hypercubes. First, we use a dynamic algorithm to reconfigure a complete binary tree of height \(h \) \((h \geq 0)\) in an \((h+1)\)-dimensional faulty hypercube. If there is a faulty node in the hypercube, both the dilation and congestion are 2 after reconfiguration. If there are two faulty nodes in the hypercube, both the dilation and congestion are 3 after reconfiguration. If there are more than two faulty nodes in the hypercube, we impose a constraint on the type of the faulty nodes, both the dilation and congestion are 3 after reconfiguration. Then we reconfigure a complete binary tree of height \(h \) in an \((h+2)\)-dimensional hypercube with at most \(2^{h+1} - 1 \) nodes, and the dilation and congestion are, respectively, 2 and 1 after reconfiguration. The number of the affected nodes are minimized after reconfiguration.

Keyworks: Reconfiguration, Complete binary tree, Hypercube, Embedding.

1. Introduction

The hypercube is one of the most effective as well as popular network architectures of parallel machines. The hypercube offers a rich interconnection topology, a recursive structure, and a low diameter. The structure of the hypercube can simulate many computational structures with only small constant factor slowdown, such as arrays, binary trees and mesh of trees [1].

Over the years, tree topology has been designed to describe many computations, for example, searching, sorting, and merging problems [2, 3]. Particularly interesting among trees is the complete binary tree, which is a natural computational structure for parallel algorithms, such as “divide-and-conquer” type [4].

Many researches have discussed the embedding of binary trees into hypercubes [1, 5-10]. In [1, 5], it has been proven that a double-rooted complete binary tree of height \(h \) \((h \geq 0)\), denoted by \(DT_h \) which is a complete binary tree with the root replaced by a path of length two, is a subgraph of an \((h+1)\)-dimensional hypercube, denoted by \(H_{h+1} \). [6, 7] has shown a complete binary tree of height \(h \), \(T_h \), which has \(2^{h+1} - 1 \) nodes, can be embedded into \(H_{h+2} \) so that the adjacency of \(T_h \) is preserved. There exists no one-to-one node embedding of \(T_h \) into \(H_{h+1} \) and the adjacency of \(T_h \) is preserved [6]. Wagner [8] described the embedding of a binary tree of height \(h \) into \(H_h \); the binary tree was complete for the first \(h-2 \) levels. Wu et al. [9] presented the embedding of binomial trees in hypercubes with link faults. [10-13] has addressed how to reconfigure binary trees in faulty hypercubes.

The purpose of this paper is to present how to reconfigure dynamically a complete binary tree in a hypercube with faulty nodes. First, we
discuss how to reconfigure T_h in an $(h+1)$-dimensional hypercube with faulty nodes, then discuss how to reconfigure T_h in an $(h+2)$-dimensional hypercube with at most $2^{h+1}-1$ faulty nodes. It is considered that the number of the affected nodes are minimized after faults recovery.

The remaining sections are organized as follows. Section 2 gives the notations and definitions of this paper. In Section 3, we present how to reconfigure T_h in H_{h+1} with one or more faulty nodes. A free node of the hypercube is assigned to recover one faulty node, and the leaf nodes of T_h are embedded into other faulty nodes. In Section 4, we give an algorithm to reconfigure T_h in H_{h+2} with at most $2^{h+1}-1$ faulty nodes, the dilation and congestion of reconfigurable embedding being respectively 2 and 1, and only the faulty nodes suffer the influence after faults recovery. Finally, the conclusion is given in Section 5.

2. Preliminaries

The root of the complete binary tree of height h, T_h, is in level 0, two nodes in level 1, four nodes in level 2, 2^i nodes in level i, etc., and the total number of T_h is $2^{h+1}-1$, where $h \geq 0$. The n-dimensional hypercube, H_n, has 2^n nodes. These nodes of H_n are labeled $\{0, 1, 2, \ldots, 2^n-1\}$ with binary numbers. Two nodes in the hypercube are linked with an edge if and only if their binary numbers differ by a single bit. The Hamming distance is the number of different bits between two nodes. To conveniently describe the embedding, we use two colors, black and white, to correspond to the binary number. If the node has even number of 1’s, it is colored black. Otherwise it is colored white. Since the hypercube has a perfect matching, H_n has 2^{n-1} black nodes and 2^{n-1} white nodes.

The cost of one-to-one node embedding of a guest graph into a host graph is measured in terms of dilation and congestion. The dilation of an edge of the guest graph is the length of embedded path of the host graph. The dilation of an embedding is the maximum dilation over all edges of the guest graph. The congestion of an edge of the host graph is the number of edges of the guest graph that are embedded using the same edge of the host graph. The congestion of an embedding is the maximum congestion over all edges of the host graph. Hence, we have to consider the tradeoff between the dilation and congestion of an embedding.

The faulty model of the hypercube is defined as follows [14, 15].

(1) The computational part of a faulty node is not utilized, while its links are fault-free.
(2) A free node is not assigned initially; it can be used to recover faults but can not be reused to recover any other faults later.
(3) The task of the faulty node is allowed to migrate to the free node.
(4) Assume the faulty diagnosis mechanisms are fault-free.

Hence, all the free nodes can be used to recover from faults in the hypercube.

3. Reconfiguring T_h in a faulty H_{h+1}

In this section, we discuss how to reconfigure T_h in a faulty H_{h+1}. T_h can be embedded into H_{h+1} with dilation 2 and there remains a free node in H_{h+1} [6]. When an arbitrary faulty node occurs in H_{h+1}, we can reconfigure T_h in H_{h+1} since the hypercube is symmetric, and the reconfiguration results in all nonfaulty nodes of T_h to be affected. We have to consider how to reduce the overhead of data communication after faults recovery; that is, the number of the affected nodes has to be as few as possible after reconfiguration. Therefore, we present a dynamic algorithm to reconfigure the complete binary tree in a faulty hypercube.

Theorem 1. T_h can be reconfigured dynamically to embed into H_{h+1} with dilation 2 and congestion 2 when an arbitrary faulty node
occurs in H_{h+1}.

Proof. First, we construct T_h from DT_h. The *dilation* is 2 and the *congestion* is 1 for such construction of T_h in H_{h+1} (see Fig. 1) [1]. When an arbitrary node becomes faulty in H_{h+1}, there are two cases to be considered as follows.

![Fig. 1. Construction of T_h from DT_h.](image)

Case 1. If the faulty node is one of both roots of DT_h, we let the nonfaulty root become the root of T_h and the dilation and congestion are not altered.

Case 2. When the faulty node occurs in the internal nodes or the leaf nodes of T_h. Without loss of generality, assume the faulty node is in the left subtree of root r_l of DT_h. The path from the faulty node to root r_l has to be modified; that is, let r_s become the root of T_h and the nodes of the path are re-embedded into their parent nodes (see Fig. 2). Hence, each node of the path links its two sons using one edge whose dilation is 2 and the other edge whose dilation is 1, while the parent node of the faulty node uses two edges whose dilation are 2 to link its two sons. The congestion of edges of the path are equal to 2 in H_{h+1}.

![Fig. 2. The path from the faulty node to r_l is described by solid lines.](image)

Therefore, if a faulty node occurs in level i ($i>0$) of T_m, the number of edges with dilation 2 increases i, and the congestion of edges of the path increases 1 in H_{h+1}. T_h can be reconfigured dynamically in H_{h+1} with dilation 2, congestion 2, and there are $i+1$ affected nodes after reconfiguring when an arbitrary faulty node occurs in H_{h+1}.

Now we consider H_{h+1} with at least two faulty nodes. For reconfiguring T_h in H_{h+1}, we need the following lemma.

Lemma 1. DT_{h-1} ($h \geq 1$) can be embedded into H_h as each leaf node of DT_{h-1} is linked to a certain internal node of DT_{h-1} via an edge in H_h.

Proof. We color the nodes of DT_{h-1} with black or white in H_h. Suppose the leaf nodes of left subtree of the roots are black and the leaf nodes of right subtree of the roots are white. We prove the lemma by induction on h.

Hypothesis: DT_{h-2} can be embedded into H_{h-1} as each leaf node of DT_{h-2} is linked to a certain internal node of DT_{h-2} via an edge in H_{h-1}.

Basis step: When $h=1, 2$, it is trivial. DT_2 can be embedded into H_3 as shown in Fig. 3. The figure shows the links between leaf nodes and internal nodes in H_3; for example, leaf nodes $n3$, $n4$, $n7$ and $n8$ link to internal nodes $n2$, $n5$, $n1$ and $n6$, respectively.

![Fig. 3. Linking leaf nodes to certain internal nodes of DT_2. The solid lines represent the links in H_3.](image)

Induction step: We partition H_h into two $H_{h,1}$’s by the most significant bit. Since DT_{h-2} is embedded into $H_{h,1}$, we can merge two $DT_{h,2}$’s to
DT_{h-1} as shown in Fig. 4. The links between leaf nodes and certain internal nodes in DT_{h-1} are the same as the hypothesis above describes. Therefore, the lemma is proved.

![Fig. 4. Construction of DT_{h-1} from two DT_{h-2}’s. The added edges are shown in solid lines. Nodes 010- and 110- are both roots of DT_{h-1}.](image)

Theorem 2. T_h can be reconfigured dynamically to embed into H_{h+1} with dilation 3 and congestion 3, and a leaf node of T_h is embedded into one faulty node of H_{h+1} when two arbitrary faulty nodes occur in H_{h+1}.

Proof. Likewise, We construct T_h from DT_h in H_{h+1} (see Fig. 1). When two arbitrary faulty nodes u and v occur in H_{h+1}, there are two cases to be considered as follows.

Case 1. If the two faulty nodes u and v are not adjacent in H_{h+1}, and u is in level i and v is in level j, where $i \neq j$ (see Fig. 5). Faulty node u is reconfigured as Theorem 1 describes, and the other faulty node v has to be reconfigured to embedded into a leaf node of T_h to reduce the influence of the structure of T_h. Since internal node v of DT_h has an edge to link a certain leaf node, w, according to Lemma 1, faulty node v can be re-embedded into leaf node w. Hence, the dilation of edge which links the parent node of v and w is 2, and the dilation of edges which link w and two sons of v are 2. The congestion of edge (v, w) of H_{h+1} is 3.

![Fig. 5. Two faulty nodes u and v are not adjacent in H_{h+1}.](image)

Case 2. If the two faulty nodes u and v are adjacent in H_{h+1}, u and v are in level 0, or u is in level i and v is in level j, where $j-i=1$ (see Fig. 6). When nodes u and v are in level 0 (see Fig. 6(a)), we let leaf node w, which has an edge to link faulty node u, become the root of T_h. The dilation of two edges linking w and its two sons are respectively 3 and 2. The congestion of edge (w, u) of H_{h+1} is 2.

![Fig. 6(a)](image)

When faulty node u is in level i and v is in level j, where $j-i=1$ (see Fig. 6(b)). Faulty node u is reconfigured to be the same as in Theorem 1. Assume leaf node w, which has an edge to link faulty node v, is used to recover faulty node v. The dilation of edge which links the parent node u and w is 3 after re-embedding, and the dilation and congestion of remaining edges are the same as in case 1.
Therefore, T_h can be reconfigured dynamically to embed into H_{h+1} with two arbitrary faulty nodes, and a leaf node of T_h is embedded into one faulty node. Both the \textit{dilation} and \textit{congestion} are 3, and there are at most $h+2$ affected nodes after reconfiguring.

When there are more than two faulty node appearing in H_{h+1}, we impose a constraint on the number and the type of faulty nodes as follows.

\textbf{Constraint:} When an internal node of the double-rooted complete binary tree in a hypercube occurs to be faulty, the nodes which are adjacent with the faulty node have to be nonfaulty. The leaf nodes, which have edges to link the faulty node and its adjacent nonfaulty nodes, have to be at least two nonfaulty nodes.

Now we consider how to reconfigure T_h with this constraint.

\textbf{Theorem 3.} With the above constraint, T_h can be reconfigured dynamically to embed into H_{h+1} with \textit{dilation} 3 and \textit{congestion} 3, and leaf nodes of T_h are embedded into the faulty nodes of H_{h+1}.

\textbf{Proof.} First, we construct T_h from DT_h in H_{h+1} (see Fig. 1). Each internal node has an edge to link a certain leaf node by Lemma 1; such linking edges are described by dashed lines as shown in Fig. 7. Without loss of generality, we consider probable cases as follows. Assume node $n2$ is faulty and node a is nonfaulty (see Fig. 7), node $n2$ is re-embedded into node a; hence, the dilation of edges $(n1, a)$, $(a, n3)$ and $(a, n4)$ are respectively 2, and the congestion of edge $(n2, a)$ of H_{h+1} is 3.

Moreover, assume node a is also faulty, while at least one of the two leaf nodes g and e, which link respectively to nodes $n3$ and $n4$, is nonfaulty. Without loss of generality, let node e be nonfaulty node, then node $n2$ be re-embedded into node $n4$ and node $n4$ be re-embedded into node e. Hence, the dilation of edges $(n1, n4)$, $(n4, n3)$, $(e, n7)$ and $(e, n8)$ are 2, the dilation of edge $(n4, e)$ is 1, and the congestion of edge $(n4, e)$ of H_{h+1} is 3.

Furthermore, assume node $n7$ or $n8$ is faulty. Now we consider node $n7$ only. At least one of the three leaf nodes b, c and d, which link respectively to internal nodes $n9$, $n7$ and $n10$, is nonfaulty. Let node d be nonfaulty, node $n7$ be re-embedded into node $n10$ and node $n10$ be re-embedded into node d. Hence, the dilation of edges $(e, n10)$, $(n10, n9)$, $(n10, d)$, $(d, n13)$ and $(d, n14)$ are respectively 3, 2, 1, 2 and 2, and the congestion of edge $(n10, d)$ of H_{h+1} is 3.

Similarly, if nodes $n8$ or $n13$ or $n14$, etc., are faulty, these faulty nodes can be reconfigured with dilation at most 3 and congestion at most 3.

Therefore, T_h with the constraint can be reconfigured dynamically to embed into H_{h+1} with \textit{dilation} 3 and \textit{congestion} 3 if there are
more than two faulty nodes appearing in \(H_{h+1} \), and there are at most three affected nodes for reconfiguring each faulty node. □

4. Reconfiguring \(T_h \) in \(H_{h+2} \) with Faults

\(T_h \) has been shown to be able to be embedded into \(H_{h+2} \) so that the adjacency of \(T_h \) is preserved \([6, 7] \). There remains \(2^{h+1}+1 \) free nodes for embedding \(T_h \) into \(H_{h+2} \), hence, \(H_{h+2} \) provides more fault tolerance. While \(T_h \) has to be reconfigured whenever a faulty node occurs in \(T_h \), there are \(2^{h+1}+1 \) nodes which may be affected for each reconfiguring in \(H_{h+2} \). The performance of the system will then suffer much influence for recovering the faults.

In this section, we present a reconfigurable algorithm to embed \(T_h \) into \(H_{h+2} \) with faults. The algorithm allows at most \(2^{h+1}+1 \) faulty nodes in \(T_h \) and only the faulty nodes are affected for the reconfiguration, and the dilation and congestion of reconfigurable embedding are respectively 2 and 1.

First, we give a definition and a lemma before reconfiguring \(T_h \) in \(H_{h+2} \).

Definition 1. Let \(LT_h \) \((h \geq 0)\) denote a graph which has two complete binary trees of the same height \(h \) and there is an augmented edge to link two nodes on the same position between two complete binary trees (see Fig.8 for \(LT_2 \)).

Fig. 8. \(LT_2 \) (The augmented edges are described by dashed lines).

Lemma 2. \(LT_h \) \((h \geq 0)\) can be embedded into \(H_{h+2} \) with dilation 2 and congestion 1.

Proof. We prove the theorem by induction on \(h \).

Hypothesis: Embedding \(LT_{h-1} \) into \(H_{h+1} \) with dilation 2 and congestion 1 is true.

Basis step: When \(h=0, 1 \) and 2, it is trivial. The embedding of \(LT_2 \) into \(H_4 \) is shown in Fig. 9. It is one-to-one node embedding, the dilation of edges \((n1, n6)\) and \((a, f)\) of \(LT_2 \) are respectively 2, and the congestion is 1.

![Fig. 9. (a) \(LT_2 \) in two \(DT_2 \)'s. (b) The embedding of \(LT_2 \) into \(H_4 \) (The augmented edges are described by dashed lines).](image)

Induction step: First, we decompose \(H_{h+2} \) into two \(H_{h+1} \)'s. Then we can construct respectively two \(LT_{h-1} \)'s in both \(H_{h+1} \)'s. Let both node \(a \) and \(b \) denote the roots of \(LT_{h-1} \) in one \(H_{h+1} \), and both node \(c \) and \(d \) denote the roots of \(LT_{h-1} \) in the other \(H_{h+1} \) as shown in Fig. 10(a). The nodes labeled with binary number are different at the most significant bit between two \(H_{h+1} \)'s. Since any hypercube is symmetric, we let nodes \(a, n1, n5, b, n3 \) and \(n7 \) link to nodes \(n6, n2, c, n8, n4 \) and \(d \), respectively. There are eight \(T_{h-1} \)'s in two \(H_{h+1} \)'s, which are denote \(t1, t2, t3, t4, t5, t6, t7 \) and \(t8 \) from left to right as shown in Fig. 10(a),
respectively.

![Diagram](image-url)

Fig. 10. Construction of LT_h from LT_h_1's in both H_h+1's. The binary numbers of the leftmost four bits of the nodes are written aside the nodes.

In such linking, we can construct LT_h. The links among nodes on the same positions are the same as the hypothesis describes except for two new roots: n1, n3, while there is an unused edge to link n1 and n3 (see Fig. 10(b)). The dilation and congestion are the same as in the hypothesis. Therefore, this theorem is true for any dimension of hypercube according to the induction. □

Theorem 4. T_h can be reconfigured dynamically to embed into H_h+2 with dilation 2 and congestion 1, and only the faulty nodes suffer the influence of reconfiguration when then there are at most 2\^\(h+1\) faulty nodes in T_h.

Proof. We can embed LT_h into H_h+2 with congestion 1, the dilation of two edges are 2 and those of the others are 1 according to Lemma 2. Each node of one T_h, denoted by T_h, of LT_h has an edge to link a node (on the same position) of the other T_h, denoted by T_r, of LT_h.

Assume T_h is embedded initially into T_i with dilation 2 and congestion 1. When node n1 (or n3) is faulty in T_i (see Fig. 11), we let node n1 (or n3) be re-embedded into node n8. Moreover, if nodes n1 and n3 are faulty in T_i, we let both faulty nodes be re-embedded into nodes a and c of T_r, respectively. Similarly, if there are other arbitrary faulty nodes appearing in T_i, we re-embed the faulty nodes into the free nodes (on the same position) of T_r, and link to two sons of the free nodes, then return to two sons of faulty node of T_i. The dilation of edges which link the free nodes of T_i to its parent and sons is at most 2, and the congestion of edges of H_h+2 is 1.
Therefore, T_h can be reconfigured dynamically to embed into H_{h+2} with dilation 2, congestion 1, and the number of the affected nodes are minimized after reconfiguration when there are at most $2^{h+1}-1$ faulty nodes in T_h.

5. Conclusion

This paper has presented simple but effective algorithms to reconfigure dynamically complete binary trees in hypercubes. If there is an arbitrary faulty node in H_{h+1}, both the dilation and congestion are 2 after reconfiguring T_h. If there are two arbitrary faulty nodes in H_{h+1}, both the dilation and congestion are 3 after reconfiguration. There are at most $h+2$ affected nodes after reconfiguring T_h. Moreover, if there are more than two faulty nodes in H_{h+1}, we discuss how to reconfigure dynamically T_h with the constraint in H_{h+1}, both the dilation and congestion are 3 after recovery, and there are at most three affected nodes for reconfiguring each faulty node.

In addition, we present an algorithm to reconfigure dynamically T_h with at most $2^{h+1}-1$ faulty nodes in H_{h+2}, the dilation and congestion being respectively 2 and 1, and the number of the affected nodes are minimized after reconfiguration.

References

