報告題名：

蒸餾塔之回授控制系統研究

作者：劉懿萱、詹惠婷、張紋釩、洪惠娟、吳孟儒

系級：化工三甲

學號：D9463572、D9463484、D9463406、D9463703、D9360108

開課老師：陳奇中教授

課程名稱：程序控制

開課系所：化學工程學系

開課學年：96 學年度 第 一 學期
中文摘要

蒸餾塔的功用是將多成份系的原料經過加熱後，由塔中央的下面適當位置做為進料層，以進行蒸餾或精餾為目的。而蒸餾液組成、蒸餾液流率、塔頂壓力...等等變因都會影響輸出的結果，本報告以流量控制、溫度控制、液位控制、壓力控制分別討論對蒸餾塔系統輸出之影響。

關鍵字：回授控制系統、流量控制、溫度控制、液位控制
目次

一、蒸餾塔基本構造 ... 6
二、蒸餾塔使用原理 ... 6
三、蒸餾塔功能 ... 7
四、蒸餾塔之基本流程 ... 8
五、蒸餾塔之設計 ... 9
六、蒸餾塔之模擬實例 ... 13
七、結語 .. 19
圖目錄

圖一 蒸餾塔構造圖 ...06
圖二 蒸餾塔之基本流程裝置圖 ...08
圖三 典型之蒸餾塔 ...09
圖四 典型之蒸餾塔控制情況 ..10
圖五 進料流率之控制情況 ...12
圖六 溫度控制環之塊解圖 ...13
圖七 模擬 MPC 之架構圖 ...14
圖八 圖控軟體及蒸餾塔連結圖 ...16
圖九 蒸餾塔流程與控制系統 ..16
圖十 CV1、CV2 與 CV3 之應答圖 ...18
表目錄

表一 MATLAB 軟體識別出程序之模式.................................18
一、蒸餾塔基本構造【1】

蒸餾塔的內部設有盤架，盤架的附屬機件（如罩蓋、溢流堰、封鍋蓋、排送管、分散器、擋板、除霧器）等，在塔壁裝有各種管接頭、人員進出孔、以及安裝各種測量儀器等。盤架的形態有船型、泡鐘型、多孔板、摺曲式、波紋型、壓載型等。

圖一 蒸餾塔構造圖【2】

二、蒸餾塔使用原理

蒸餾塔主要目的，是將含有多種成份的液體，作逐一分離。其主要是利用各物質之特有物理性質—蒸氣壓而進行分離。蒸氣壓愈高，揮發度較高之物質容易先被分離出來，而且通常蒸氣壓較高的物質，其揮發度也高，但是其沸點較低，易被加熱而發生沸騰。

※蒸餾的理論基礎有二種：勞特定律與道耳吞分壓定律，以下將逐一作介紹。

1. 勞特定律【3】

混合液中成份A之平衡蒸氣壓PA，應為該成份在液相中之摩耳
分率 X_A，與在同溫下純 A 的平衡蒸氣壓 P_A° 之乘積。

$$P_A = X_A P_A^\circ$$；總壓力 $P_t = P_A + P_B = P_B^\circ + (P_A^\circ - P_B^\circ) X_A$

(1) 在同溫下，濃度不同的兩溶液，其總蒸氣壓亦不相同。

(2) 符合勞特定律的溶液，稱為理想溶液。例如：甲苯與苯。

2. 道耳吞分壓定律【3】

混合氣體中，成份 A 之分壓 P_A，為 P_t 與該成份莫耳分率 y_A 之乘積。

$$P_A = y_A P_t$$

where, y_A：氣相中成分 A 的莫耳分率

引用勞特定律公式和道耳吞分壓定律公式可得到公式：

$$X_A = \frac{P_A^\circ - P_B^\circ}{P_A^\circ - P_B^\circ}$$

三、蒸餾塔功能

利用混合物的各成分沸點的不同，將混合物導入塔中之後，控制溫度使其分成氣、液兩相。沸點較低的物質會汽化往塔頂方向流出，沸點較高的物質則以液體狀態於塔底排出，以達到混合物物質分離的效果。

※注意：【4】

物質達共沸點時，液相之組成與氣相之組成相同，故無法繼續蒸餾出純度更高的純物質，此時必須再加入另一成分，使得餾液其中一
蒸餾塔之迴授控制系統研究

物質能與其相結合重新產生存沸，然後再次作蒸餾動作，便能得到更高純度的物質，此步驟稱為共沸蒸餾。

以酒精為例，酒精在蒸餾塔能蒸餾出的最高純度是 95%，純度到了 95% 時，水和酒精便會產生共沸，若欲得到更高的純度，就必須再加入苯，水與苯互溶之後，便會與酒精分離，且此時酒精沸點較低，於是較高純度的酒精便能從塔底取得。

四、蒸餾塔之基本流程

![蒸餾塔之基本流程裝置圖](image)

原料進口處在蒸餾塔中央稍下方處，經加熱達預定的溫度後，進入蒸餾塔內部。此時因加熱的作用可能會有大於 10% 的原料會產生氣體，因此塔中的原料氣體自塔底往上升，然後經過上層泡罩而與盤架
上液體混合。且與該液體同沸點的成份即在該層中液化，經過溢流管流落至下層盤架。而不能液化的低沸點成份物質即以氣體形態再由塔中上升，同樣經過上層泡罩而於盤架上與溶液接觸，如此一再重覆使液體與氣體相互接觸，使一部份液化，並降落至塔之下層的盤架，於是沸點最低的成份即以氣態直達塔頂。而且，可在塔之最上部及二、三層位置將該處液化之液體送回當作回流，提高塔內之熱度平衡及提高其精餾效果。

五、蒸餾塔之設計【6】

如圖三所示，典型之蒸餾塔控制，大多固定進料的流率與組成，並且於蒸餾塔中加入再沸器(Reboiler)，則穩態下之蒸餾液及底部產品的流率與組成，及塔頂壓力皆為固定，故可將輸入及輸出變數分列如下：

※輸入變數:

1. 進料流率(設進料溫度為一定)
2. 進料成分

3. 蒸氣流率（設在一定之飽和溫度下）

4. 冷卻水流率（設水溫一定）

5. 回流比

※輸出變數:
1. 蒸餾液組成
2. 蒸餾液流率
3. 底部產品組成
4. 底部產品流率
5. 塔頂壓力

輸入變數與輸出變數之數目一般不必相等。理論上，每個輸入變數與輸出變數之數目皆有一轉移函數，以上述來說，總共有25個轉移函數。
函數。通常為了簡化計算，會做許多假設。例如，研究回流比變化時，
回流比變化對蒸餾液組成之影響較為直接，僅考慮此二者間之轉移函
數即可。

對一個蒸餾塔而言，通常以蒸餾液組成(及純度)之控制為最重要
要，再假設較次要之底部產品組成所發生之微量變化。蒸餾塔之主要
控制器如下:

(1)流量控制器

由圖四可知，五種輸入變數中任何一個發生變化皆會影響蒸餾液
組成。若再進料及蒸氣輸入處各添置一流量控制器 FC，則可消除進
料流率及蒸氣流率之變化。

圖五為動作原理塊解圖：在進料管線上加裝一孔口流量計
(Orifice Meter)以測量流量，測出兩邊之壓差，經過一傳動器
(Transducer)傳至控制器，在與定點比較後，控制器輸出一空氣信號
至閥之頂端。通過閥之流率，同時受此空氣信號及閥的上游處進料壓
力之影響。圖中 \(\frac{dq}{dP} \) 與施於閥頂端空氣壓力間關係之轉移函
數，可藉下式表示:

\[G_v(s) = \frac{dq}{dP_v} s/\tau_v s + 1 = K_v/1 + \tau_v s \]

；其中 \(P_v \) 為所施之氣壓。

由於流率與壓差之平方跟成正比，且孔口流量計乃一非線性裝置，故
必須使用液面控制系統處理方法將平方根關係線性化。
圖五 進料流率之控制情況【6】

(2) 溫度控制器

若頂板壓力保持一定，則頂板(Top Plate)處液體之溫度及沸點可作為蒸餾液純度之基準，而蒸餾液組成可藉由調整塔中之回流比來控制：回流比增加時，蒸餾液純度增加；反之，回流比減少時，蒸餾液純度亦減少。如圖四所示，在蒸餾液蓄積器(Accumulator)與蒸餾塔間添置一溫度控制器(TC)，可達成控制蒸餾液純度之目的。例如：若頂板溫度增加，顯示沸點較高，蒸餾液純度低，此信號立即傳至溫度控制器，則溫度控制器將增大回流速率以提高蒸餾液之純度。圖六表示此溫度控制環之塊解図，在此以進料組成作為負載變數。

圖六 溫度控制環之塊解図【6】
(3) 液位控制器

為便於增加或減少回流比及蒸餾液之輸出，在蒸餾液蓄積器上添置一液面控制器(LC)，使蓄積器中蒸餾液之液面保持一定，以調節蒸餾液流率。同理，在塔底之再沸器上裝置一液面控制器(LC)，使再沸器內液面維持一定，以調節底部產品流率。

(4) 壓力控制器

蒸餾塔之塔頂壓力可藉調節供給冷凝器之冷卻水流率來控制。如圖四所示，在冷凝器與蓄積器間裝置一壓力控制器(PC)即可達控制之目的。塔頂壓力高時，PC 使冷卻水控制閥大開，增加冷卻水流率，使壓力降低；反之，減少冷卻水流率即可使壓力提高。

六、蒸餾塔之模擬實例【7】

本篇報告模擬實例採用模式預測器在隔牆式蒸餾塔之操作，利用蒸餾塔三個不同位置之溫度同時控制塔頂產品、側流產品與塔底產品之組成。

1. 基本架構:

模擬一個系統具有 m 個 Input(含操作變數 MV 及干擾變數 DV)、n 個 Output(被控制變數)的系統，MPC 必需利用辨識方法建立 nxm 個程序模式，模式採用 FIR Model，模擬 MPC 之架構如圖所示:
圖七 模擬MPC之架構圖【7】

其中，**Prediction**: predict future trajectory of all CVs

Controller: determine optimal MVs to bring CVs to setpoints by using SQP algorithm

Model: FIR model

Process: plant or rigorous model

2. 假設 MPC 控制結構

(1) 選定 Input(含操作變數 MV 及干擾變數 DV)及 Output(被控制變數、限制變數 CV)

(2) 決定 CV 類型

(3) 決定 MV 的限制條件

(4) 決定 MV、CV 之 priority

(5) 參數設定:

a. 控制長度 CH：設定 CH 值來參考軌跡的路徑，CH 值設定大時控制動作會減慢；CH 值若減小控制動作會增快，對模型誤差的靈敏度增高。
蒸餾塔之迴授控制系統研究

\[CH = 4 \times (\tau_1 \times K_1 + \cdots + \tau_n K_n) / (K_1 + \cdots + K_n) \]
\[\tau_1 \cdots \tau_n: \text{時間常數} \]
\[K_1 \cdots K_n: \text{增益（Gain）} \]

本文設定:

b. 控制週期: 定為主要模式之間常數的 1/10

c. 預測長度(PH)與比較點數

d. 權重與優先順序

3. 模式預測器在隔牆式蒸餾塔實際測試結果

測試 MPC 控制性能, 我們利用小型隔牆式蒸餾器測試:

(1) 實驗設備: 蒸餾塔、冷凝器、再沸器、回流槽、計量汞、溫度計、液位計

※圖控軟體及蒸餾塔連結圖如下:

![圖八 圖控軟體及蒸餾塔連結圖【7】](image)
圖九 蒸餾塔流程與控制系統【7】

(2) CV，MV 與 DV 之說明:

a. CV(被控制變數)有三個:

第二個填充床位置的溫度(CV1)、第四個填充床位置的溫度(CV2)以及第七個填充床位置的溫度(CV3)，

b. MV(操作變數)有三個:

即回流量(MV1)、測流量(MV2)、再沸器加熱量(MV3)，

c. DV(干擾變數)有兩個:

即進料流量(DV1)與進料溫度(DV2)

(3) 控制流程:

a. 進料流量是由 PC 經控制介面送出 4 ~ 20mA 信號給進料泵，直接
蒸餾塔之迴授控制系統研究

控制流量。

b. 進料溫度係由 PID 控制器送出控制信號至 SSR 調節加熱帶之加熱量來控制。

c. 外回流量係由 MPC 計算出結果經控制介面送出 4~20mA 信號至外回流泵來控制。

d. 側流量(MV2) 係由 MPC 計算出結果，經控制介面送出 4~20mA 信號至側流泵來控制。

e. 再沸器加熱量之控制，是由 MPC 計算出結果經控制介面送出 4~20mA 信號至功率轉換器(SCR)換算出電功率(MV3)給加熱棒。

f. 內回流由內回流泵來控制，隔牆兩邊之內回流流量分別由閥控制，維持兩邊之流量相同。

g. 回流槽液位由液位控制器(LC)送出 4~20mA 信號至塔頂產品泵來控制。

h. 再沸器液位由液位控制器送出 4~20mA 信號至塔底產品泵來控制。

(4)模式的識別

在開環路下，分別將 MV1、MV2、MV3、DVI 給予 Positive and Negative Step Change，收集 CV1、CV2、CV3 之應答數據利用
蒸餾塔之迴授控制系統研究

MATLAB 軟體識別出程序之模式。如下圖所示:

表一 MATLAB 軟體識別出程序之模式【7】

<table>
<thead>
<tr>
<th>系數</th>
<th>表達式</th>
</tr>
</thead>
<tbody>
<tr>
<td>-0.0368</td>
<td>e^{-20s}</td>
</tr>
<tr>
<td>0.001</td>
<td>e^{-10s}</td>
</tr>
<tr>
<td>0.0891</td>
<td>e^{-10s}</td>
</tr>
<tr>
<td>-0.0155</td>
<td>e^{-20s}</td>
</tr>
<tr>
<td>$\frac{1}{220s+1}$</td>
<td>$\frac{1}{150s+1}$</td>
</tr>
<tr>
<td>-0.0422</td>
<td>e^{-20s}</td>
</tr>
<tr>
<td>0.0103</td>
<td>e^{-20s}</td>
</tr>
<tr>
<td>0.0104</td>
<td>e^{-10s}</td>
</tr>
<tr>
<td>-0.0151</td>
<td>e^{-20s}</td>
</tr>
<tr>
<td>$\frac{1}{200s+1}$</td>
<td>$\frac{1}{120s+1}$</td>
</tr>
<tr>
<td>-0.0447</td>
<td>e^{-20s}</td>
</tr>
<tr>
<td>0.031</td>
<td>e^{-20s}</td>
</tr>
<tr>
<td>0.0838</td>
<td>e^{-10s}</td>
</tr>
<tr>
<td>-0.0216</td>
<td>e^{-20s}</td>
</tr>
<tr>
<td>$\frac{1}{200s+1}$</td>
<td>$\frac{1}{150s+1}$</td>
</tr>
</tbody>
</table>

(5) MPC 之實驗測試結果

CV1 設定點在 1.04 小時由 68.1°C 階梯變化至 67.8°C，在 2.6 小時階梯變化 68.5°C；CV2 設定點維持 70.4°C，CV3 設定點維持 73.8°C 之情況下，CV1、CV2 與 CV3 之應答如圖所示。

圖十 CV1、CV2 與 CV3 之應答圖【7】
七、結語

每個程序的環節都是緊密相連的，所以在設計程序上需相當謹慎！為了使系統之輸出變數保持一定的數值，或以預定之方式改變，故系統的回授控制系統就顯得相當重要。它能即時的修正原料的進出與各閥調節的開度，使得系統對外來的雜訊干擾及內部參數的變動變得較不敏感，增進系統控制的準確度，提高產品的產率，進而得到最大的獲益。
參考文獻

【1】
http://www.che.yuntech.edu.tw/processlab/Distillation%20column.htm

【2】
www.uvn.cn/.../archive_act_index_c_555044.jhtml

【3】
http://content.edu.tw/vocation/chemical_engineering/tp_ss/content-wa/wchm2/wpage2-1.htm

【4】
http://tw.knowledge.yahoo.com/question/?qid=1405120300509

【5】
che.cycu.edu.tw/course/petroleum/distillation3.ppt2

【6】程序控制，鄧禮堂著，P.199~203，高立圖書有限公司(1996)

【7】中華民國九十四年石油季刊 第41卷 第3期 P.03~07
自評

寫作情況

□ 抄襲 （抄襲自__________________________）
■ 自行創作撰寫

文章類別
■控制元件等相關報導
■工廠控制實務
■控制技術與理論
□程序控制與人生
■其他與程序控制相關主題

自評成績
□極優（內容充實，言之有物，能與上課主題產生關連，排版美工用心）
■優（內容充實，言之有物，能與上課主題產生關連）
□佳（內容充實，言之有物）
□普通（內容尚可）
□有待改進（沒有用心寫）
□不用批改（抄襲等情事）

<table>
<thead>
<tr>
<th>能力及工作</th>
<th>劉懿萱</th>
<th>詹惠婷</th>
<th>張紋綺</th>
<th>洪惠娟</th>
<th>吳孟儒</th>
</tr>
</thead>
<tbody>
<tr>
<td>簡報製作</td>
<td>★</td>
<td></td>
<td>★</td>
<td></td>
<td>★</td>
</tr>
<tr>
<td>資料蒐集</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
</tr>
<tr>
<td>創新思考</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
</tr>
<tr>
<td>歸納整理</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td></td>
<td></td>
</tr>
<tr>
<td>溝通能力</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
</tr>
<tr>
<td>團隊合作</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
</tr>
<tr>
<td>工程倫理</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
</tr>
<tr>
<td>時勢議題</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
</tr>
<tr>
<td>專業發展</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
</tr>
<tr>
<td>未來趨勢</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
</tr>
</tbody>
</table>